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ABSTRACT

Detailed measurements of an unsteady flow field within the
inlet guide vanes (IGV) and the rotor of a radial inflow turbine
were performed using a three component Laser Doppler Velocimeter
(LDV) system together with a rotary encoder. The mean velocity,
the flow angle and the turbulence contours for IGV passages are
presented at four blade-to-blade planes for different rotor
positions to give three dimensional, unsteady behavior of the IGV
flow field. These results are compared with the measurements
obtained in the same passage in the absence of the rotor. The flow
field of the IGV passage was found to be affected by the presence
of the rotor. The ratio of the tangential normal stresses to the
radial normal stresses at the exit of the IGV was found to be more
than doubled when compared to the case without the rotor.

The rotor flow field measurements are presented as relative
mean velocity and turbulence stress contours at various cross
section planes throughout the rotor. The cross flow and turbulence
stress levels were found to be influenced by the incidence angle.
Transportation of the high turbulence fluid by the cross flow was

observed downstream in the rotor blade passages.




INTRODUCTION

Radial gas turbines have been used for many years in special
applications because of their high power/weight ratio, good
starting capability, small size, quietness, low level vibration and
efficiency advantage over the axial small size turbines (1].
Therefore, radial inflow turbine finds wide range of applications
from automotive turbocharger to aircraft auxiliary power units, and
has recently been given serious consideration for primary
powerplants applications for both automobiles and rotocrafts ([2].

Increasing application of radial gas turbines necessitates a
better understanding of <the flow behavior to improve the
performance characteristics. Past research efforts have been
concentrated on One Dimensional flows with the combination of a
loss model [1-3].

However, typical geometries in the radial turbines which turn
the flow through 90° angle of deflection in the meridional plane and
simultaneously in the blade~to-blade plane naturally induce large
three-dimensional flows even in the absence of viscous effects (4].
It is further complicated by the interaction between the scroll,
nozzles and the rotor. Three dimensional flow fields in the scroll
and nozzle sections have been reported in ref(5-8].

Tabakoff et al.[9-11] obtained hot wire anemometer
measurements in the scrolls of different cross-sectional geometries
that revealed the presence of the two counter rotating vortices.

The total pressure, Mach number and the flow angle were obtained




with pressure probe measurements at the inlet and the exit of the
radial nozzle. These results are reported by Khalil, Tabakoff and
Hamed [12). It showed strong end wall cross flow and large mixing
effect at the nozzle exit. Hashemi et al. [13] presented the
results of total and static pressure measurements at three radii
downstream of the radial nozzle cascades. They also conducted flow
visualizations in air and water test rigs which showed that
secondary flows in radial turbines are different than that in the
axial machines because of the radial pressure gradients and the
incidence effects. I. Ariga et al.[14] reported relative velocity
distribution within the radial section of the radial turbine rotor
for various rotor speeds. They showed the effect of the rotor
speed on the cross flow within the rotor passages.

The errors introduced by the presence of the measuring probe
can be very serious in the radial machines because they have narrow
blade passages and low aspect ratios. A non-intrusive technique
such as Laser Doppler Velocimeter (LDV) avoids these difficulties.
Malak et al.[15] reported the measurements of the detailed flow
field through a rectangular cross-section scroll using LDV, and
observed only one vortex. H. Eroglu [16] reported detailed flow
measurements in the inlet gquide vanes. He observed 1lack of
periodicity between flow passages due to the scroll geometry and
also rapid mixing at the exit of the Inlet Guide Vanes (IGV),
caused by the converging nature of the cross-section. Rapid mixing
was also confirmed by A.N. Laksiminarasimha (17]. The studies

mentioned above were performed without the rotor which was replaced




by an aluminum body of revolution to provide flow path.

In the present study, the three dimensional flow field through
the inlet guide vanes(IGV) of the radial inflow turbine was
obtained with the corresponding rotor. Flow measurements within the
rotor blades were carried out. A three dimensional, three color
LDV system was used. The effect of the rotor on the upstream IGV
flow field was investigated through unsteady measurements. The
variation of the mean velocities in the IGV passage with respect to
the rotor blade position is reported. It was observed that the
flow field within the IGV passage exhibits periodicity with the
rotor blade rotation. The flow angle at the exit of the 1IGV
indicated underturning caused by the presence of the rotor and
leading edge vortices were observed. The flow was found to be
unsymmetrical due to the unsymmetrical scroll geometry. Flow
separation at the blade pressure surface was observed, and the
measurements indicated strong cross flow at the end wall. The
turbulence results indicated that the presence of the rotor
increases the tangential turbulence stresses. In addition it was
found that the ratio of the radial normal stresses to the
tangential normal stresses were more than doubled when compared to
the data obtained without the rotor.

The rotor measurements showed that the cross flow direction is
from the suction to the pressure side at the inlet because of the
incidence angle. This direction later changes from the pressure to

the suction side when passage pressure field becomes more dominant.




EXPERIMENTAL BET~-UP

The experimental set-up consists of the following: a) the
radial turbine, b) the seeding atomizer, c) the 3-D Laser Doppler
Velocimeter (LDV) optical system, d) the data acquisition hardware
and e) the software. (Fig.1l).
Test Rig

The pressurized air stored in a high pressure tank is supplied
through four inch diameter pipes and adjusted by a pressure
regulator. The inlet total pressure to the turbine can be set up to
20 psi by the pressure regulator. The mass flow rate is measured by
a standard orifice-meter connected to an inclined manometer filled
with standard manometer red oil with 0.827 specific density. A flow
regulating valve is used to change the air mass flow rate. The air
flow enters a settling chamber with 10" diameter followed by a flow
adapter which converges the flow from 10" diameter to 5" diameter.
Because the scroll entrance has a square cross section, another
adapter is provided. A honeycomb is placed at the end of the
second adapter, before the air flow enters the scroll.

The scroll has nearly a square cross section over most of the
circumference. The details of the scroll can be found in ref [18).

The cross section of the scroll is positioned unsymmetrically
such that one side of the square cross section lines up with one of
the nozzle end walls. The nozzle end walls are parallel and 0.5"
apart. There is a vaneless section between the exit of the scroll
and the entrance of the nozzle. This vaneless section starts at

5.41" radius and ends at 4.41" radius which is also the entrance of




the nozzles. The nozzles are between 4.41" and 3.35" radii. After
the exit of the inlet guide vanes (IGV), the air flow goes through
a vaneless section and enters the rotor. The rotor inlet radius is
3.22", while the exit shroud and hub radii are 1.7" and 0.87"
respectively (Fig.2).
Flow Seeding

A commercial six-jet atomizer was used to seed the flow with
two micrometer mean diameter propylene glycol particles at 100000
Particles/cm?
Laser and Optics

A three component Laser Doppler Velocimeter (LDV) system was
used to measure the velocity field through the inlet guide vanes
and the rotor section. The LDV system is shown in Fig.1
schematically. A five Watt argon-ion Spectra Physics, model 164-09
laser is used as the light source. The laser beam is separated in
the components by the dispersion prism. The three beams with the
highest intensities are used for the measurements. These beams have
0.5145, 0.4880, 0.4765 micrometer wavelengths and are green, blue
and purple respectively. Green and blue beams are sent through the
optical train which is in the axial direction where as the purple
beam goes through another train whose beam expander and focusing

lens are inclined 30 deg. to the axial direction. Each beam is

polarized by the polarization rotator and split into two beams with:

equal intensities. After passing through the beam expander, the two
beams for each color are focused by the focusing lens to produce a

set of fringes. Three sets of fringes are obtained for the three




colors. The blue and green colors are used to measure two
orthogonal velocity components on the plane perpendicular to the
optical axis. The non-orthogonal purple component is used along
with the blue beam to obtain the velocity component perpendicular
to this plane.

The beam expanders reduce the measurement volume diameter 3.75
times and improve the signal-to-noise ratio. Scattered lights from
the particles in the measurement volume are collected in the off-
axis backward scatter mode to reduce the noise during the wall
proximity measurements. Frequency shifters are used for each
component to reduce the fringe bias and to determine the flow
direction. Two separate collimators are installed to ensure that
the focused beams are intersected at their beam waist. This
maximizes the signal quality and eliminates the frequency
broadening effects.

The LDV signal are collected through photo multipliers and
sent to the three TSI 1990 counter type signal processors. The
entire LDV system is on a milling machine table which can traverse
10" in the axial, 18" in the transverse and 22" in the vertical
direction with 0.001" accuracy.

Measurement Window

Transparent window is required to allow the laser beams to
penetrate in the measurement region. The window that was
manufactured for the velocity measurements in the IGV passage was
flat because it replaced a part of one of the endwall. Therefore,

it did not cause any deflection problem since it deflected the




laser beams with the same angle at all measurement locations.
Plexiglass with 0.25 inches thickness was chosen as window

material.

However, the window for the velocity measurements in the rotor
has to follow the rotor shroud contour which requires curved window
shape. Different window materials were tried to investigate the
optical effect of the window material and thickness on the laser
beam. Also several models of the section at which the window was
planned was molded and these different window materials were tried
with the molded models to understand the effect of the curvature.
Finally, Lexan was selected as the window material, because it has
good transmitting properties and its thickness is 0.05 inches which
allowed us to fit the window to the rotor shroud curvature. The
molded window model with Lexan was tested with laser beam and
magnifier optics at various beam incidence angles to investigate
the possible distortions of the laser beam which can be caused by
the curved window. The highest distortion was found to be within
the location uncertainty which is limited by the accuracy of the
traverse mechahism.

After the shape, location and material of the window were
selected, the rotor section of the turbine was machined and the
window was mounted to replace the shroud wall of the rotor. The
width of the window was calculated so that laser beams are not

blocked at the deepest penetration.




DATA ACQUISBSITION SYSTEM

The LDV signal coming from the photo detectors are processed
by three counter type signal processors. The signal processors send
the data to a TSI MI-990 interface which is mounted into one of the
signal processors. The interface combines these data with the rotor
shaft information coming from TSI 1999 rotary encoder and sends
then to an IBM PC/AT compatible computer through a DMA card. The
data are collected with a rotating machinery software and stored
for further calculations.

Because the data rate from the purple component was low, the
measurement were obtained from that component separately. However,
the data from the blue and green components are collected
simultaneously with coincidence requirement set to 20 micro seconds
which is detected by the MI-990 interface, set through the data
acquisition software.

ANALOG REPERENCE INPUT S8IGNAL FOR ROTARY ENCODER

The TSI 1999 Rotary Encoder is used to obtain the position
information of the rotor shaft. The rotary encoder requires an
input signal coming from the rotor to indicate the shaft position.

The rotor has eight full blades and eight splitters. Therefore
a disc with 16 teeth was machined to generate 16 pulses with each
revolution. This disc was mounted to the turbine shaft with a light
emitting diode (LED) and a light detector assembly. The LED and the
light detector produce a signal whenever a tooth passes between
them. This signal is then sent to a circuit which was designed and

manufactured in the propulsion lab of the University of Cincinnati.




The circuit conditions the coming signal and generates clean pulse
signal with constant width. The width and the slope of the signal
can be adjusted with two adjustable resistances mounted on the
circuit.

The output signal of the circuit has an amplitude of 1.75V.
This pulse is fed to the rotary encoder as the reference input

signal.

ROTOR SHAFT-ANGLE ENCODER

The TSI 1999 Rotary Encoder is used to tag each velocity
measurement with the corresponding angular position of the rotor.

The encoder operation is based on phase-locking of the
voltage-controlled oscillator. The oscillator runs n times
(selected by the operator) faster than the frequency of the pulse
train which is fed to the encoder as analog reference input. A 14-
bit counter is started at the arrival of every input pulse and it
counts up to number n. Whenever a velocity data is received by the
MI-990 interface from the three processors, the number on this
counter is latched and sent to the computer together with the
velocity information. Between every input pulses, the time at which
the nth count is reached, is compared with the time of the arrival
of the next pulse. If the difference between any consecutive pulses
are smaller than a preset number of counts (set by the lock-
detector sensitivity switch), the rotary encoder adjusts the
oscillator so that the counter can follow small changes in the

input frequency hence in the rotor speed. If the difference is
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larger than the set lock-detector sensitivity value, the rotor is
identified as being out-of-lock.[19])

During the experiments, the number n was set to 8000, and the
lock-detector sensitivity was set to 16. Since the circuit sends 16
pulses for every revolution, each pulse corresponds to a rotor
blade passage. For the measurements through the IGV passage, the
rotor blade passage was divided to 10 blade positions so that each
shaft position has 2 deg of rotor revolution interval length. The
velocity measurements were obtained in the Inlet Guide Vanes (IGV)
of the turbine for these 10 rotor positions.

SYNCHRONIZATION OF THE ANALOG REFERENCE INPUT SIGNAL WITH THE ROTOR
IGV MEASUREMENTS:

The TSI 1999 is set such that it starts the counter as soon as
the rotor blade is at the trailing edge of the upper blade of the
interested passage. It is accomplished by adjusting the delay
setting of the encoder.

First the measurement volume of the LDV is positioned at the
rotor tip when it passes the trailing edge of the upper blade. The
rotor blades generate laser signal when they pass from the
measurement volume. The pulses coming from the circuit and the
signals coming from the LDV are observed with an oscilloscope.
These two signals are overlapped by playing with the delay setting
of the rotary encoder. The synchronization is accomplished by

repeating this procedure to assure the accuracy.
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ROTOR M UREMENTS :

During the velocity measurements in the rotor, the rotor blade
passes from the LDV measurement volume. This creates strong signal
which causes saturation in the photo multipliers, and also
introduces error in the measurements process. Therefore, the data
acquisition process is halted when rotor blade passes from the
measurement volume. This was accomplished with TSI 1999 rotary
encoder. The first, LDV measurement volume positioned on the axis
of the rotor at the interested cross section. The pulse coming from
the circuit and the laser signal obtained from the rotor blade were
observed on an oscilloscope and delay was adjusted to coincide the
pulse and the rising location of the laser signal. The second step
was to observe the laser signal coming from the blade, along with
the signal) coming from the window output of the rotary encoder. The
window count on the TSI 1999 determines the time span during which
the data acquisition is halted. This value was adjusted to cover
the time required for each blade to pass through the measurement
volume. Because rotor blade has constant thickness resulting in
greater blockage for the locations downstream at smaller radii, the
value of the window count was determined a‘ every measurement cross
section.

VELOCITY AND TURBULENCE MEASUREMENTS

The measurements of the flow field in the IGV passages are
limited to the passage of the seventh and the eighth blades
according to the numbering in Fig.2. This passage was chosen to

minimize the blockage of the laser beams by the blades. The
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measurements are taken on four blade-to-blade planes. These planes
are located at 0.1, 0.25, 0.50 and 0.7 span distances from the
plexiglass window.

The experiments were performed at 0.12 lb/s air mass flow and
900 rpm rotor speed. The horizontal (blue) and the vertical (green)
velocities are measured directly, and the on-axis velocity U, is
calculated from the blue and purple components according to the

following equation:

where U, and U, are the blue and the purple velocities respectively
and 6 is the angle between the two optical trains. In this LDV
system,"0" is 30 deg.

Due to the presence of the rotor, the velocity in the IGV is
divided into two components. The first component is the
deterministic component of the flow which varies with the
disturbances coming from the rotor. This component is the mean
velocity calculated from the data taken for a given rotor position
at a measurement point. The und2terministic component of the
velocity is calculated from the standard deviation of the data,
which is also taken for a given rotor position at a measurement
point.

In this report, the mean velocity will be defined as the mean
velocity calculated for a given rotor position, and the turbulence

velocity will be defined as the standard deviation of the data for
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the same rotor position.
For the rotor position j and the measurement point i, the mean

velocity is;

UI.JS --------------- k'ltoNﬁ

N;; = The number of data points for the rotor position j and

the measurement pcint i.

The standard deviation of the velocity for the same rotor

position j, at the measurement point i is as follows:

0;; is the turbulence level of the resultant velocity.

id
Turbulence results are presented in terms of non-
dimensionalized turbulence normal stresses in radial and tangential

directions are:

14




where f; is the angle of the resultant velocity with respect to
tangential direction for the rotor position j and at the
measurement point i. V, is the time and passage averaged exit
velocity. For the mass flow rate the turbine was tested, Vv, was
22.35 m/s.

Since the data coming from the blue and the green beams are
acquired with coincidence requirement, which assures that they come
from the same particle, Reynolds shear stress U, U, can be

calculated by the following equation:

where U;, and §;;, are the velocity and the angle of the resultant
velocity with respect to tangential direction for kth datum at
measurement location i and rotor position j.

N;; is the number of data for that measurement. U;; and Bu are
the averaged velocity and angle of that particular location and
rotor position.

The rotor measurements were performed at the same operation
conditions on six cross section planes which are perpendicular to

the main streamline. Total four measurement locations were chosen

in the spanwise direction at every measurement cross section which
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were at 0.1, 0.25, 0.50 and 0.70 span distances from the window.
The mean velocity data are presented with relative velocity
contours in tangential and streamwise directions which were
calculated from the measured absolute velocities.
ERROR ANALYSIS

As with any other techniques, the measurement of flow velocity
with LDV has some uncertainty. However, it offers non-intrusive
measurement capability, linear response and wider dynamic range as
compared to other more conventional techniques.

The use of LDV system introduces some bias errors due to the
nature of the LDV as well as some statistical uncertainties.
The bias errors have been investigated and correction methods have
been studied by many researchers. There are three groups of bias
errors. These are filter, directional (angle) and velocity bias.

The Doppler burst is filtered by a band-pass filter before
being sent to the counter processors to remove the DC pedestal and
high frequency noise, as well as to reduce the noise coming from
the outside of the frequency region containing the Doppler signal.
Different settings of the filters were tried to avoid any cut-off
of the Doppler signal to eliminate the filter biasing. Also, the
filter band widths were kept as small as possible to reduce the
noise.

The counter signal processor requires a minimum number of
fringes that a particle should cross to validate the measurement.
Therefore, the particles with the normal directions to the fringes

have a higher chance to meet this requirement. This creates a
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directional bias which can be reduced by decreasing the ratio of
the number of required fringes to the number of the total fringes
in the measurement volume.

For the LDV system used, the number of total fringes is 19 and
the number of cycles to validate the data was set to 4. The
directional bias can also be reduced by using frequency shifters.
Frequency shifters were used for all the three beams mostly in the
opposite direction of the flow. Hence, the directional bias was
reduced to a great extent.

The particles with higher velocities have a higher chance of
crossing the measurement volume. This creates a velocity bias in
the measurements. Various averaging techniques were used to reduce
the measurement bias by using different weight functions. It is
shown that the ensemble average of the velocity gives very close
results to the weighted averaging in the investigated IGV passage
(20]). Ensemble : veraging was used along with the frequency shifters
which also reduce the velocity bias.

The random error was also investigated at the upstream and
downstream of the IGV blades. The uncertainty interval of the
measured mean velocities is related to the sample size by the

following relation [21];

for 95% confidence level, z=0.96. S, is an estimator for the true

standard deviation and N is the sample size.
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The experiments at the upstream and at the exit of the IGV
channel were performed to investigate the effect of the sample size
for different turbulence levels.

Total 8000 data were taken at each point to determine the
value of the standard deviation. This value then was used to
calculate the variation of the uncertainty limits with the sample
size. The velocity survey results at the exit of the IGV passage is
presented in Fig.3. The uncertainty improves with increasing sample
size. However, the improvement is not significant when the sample
size is above 400. Therefore the sample size was chosen 400 data
for every rotor position. For 400 sample size, the statistical
uncertainties were calculated 0.60% an& 2.65% for transverse and
vertical velocities respectively at the inlet of the IGV passage
whereas the same uncertainties were 1.31% and 5.58% at the exit
plane of the IGV. Since there are total 10 rotor positions, 4000
data were collected at every measurement point in the IGV. Total
7 positions were chosen for the rotor along the circumferential
direction. Therefore 3000 data collected in the rotor for a given
spanwise measurement location.

Also systematic uncertainties were calculated using the
procedure given by Snyder et al.[21]). Relative uncertainties were

found to be 1.63%.

18




RESULTS AND DISCUSSION

The measurements were taken at mass flow rate of 0.12 1b/s and
900 rpm rotor speed. The Reynolds number and Mach number were
0.69*10° and 0.084 respectively based on the time and passage
averaged velocity at the exit of the Inlet Guide Vane(IGV), the IGV
chord length and cold air properties at 70°F.

INLET GUIDE VANE RESULTS:

The velocity results are presented for normalized radial,
tangential and axial velocity components of the mean velocity and
the angle of the total mean velocity with respect to the
circumferential direction (Fig.4) on 4 blade~-to-blade planes. These
planes are located at 0.10, 0.25, 0.50 and 0.70 blade span
distances from the plexiglass window. The velocity results are
normalized with passage and time averaged velocity at the IGV exit
which was 22.35 m/s for the test condition. Velocity and mean flow
angle contours ar vresented for three different rotor positions
which are rotor blaa: entering the IGV passage at downstream of the
IGV, rotor blade at the center of the IGV passage and rotor blade
leaving the IGV passage.

The contours of normalized radial and tangential mean
velocities at 0.5 span (mid-span) plane are given in Figs 5 through
10. The effect of the rotor on the flow field of the IGV passage
can be clearly seen by comparing Fig.5 and Fig.6. The radial
velocities reduce as the rotor blade travels from the entrance of

the passage (Fig.5) to the center of the passage (Fig.6). Then they
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increase when the rotor blade is about to leave the IGV passage
(Fig.7). Figs 8-10 are the contours for the normalized tangential
velocities on mid-span plane. The tangential velocities also
decrease when the rotor blade is at the center of the passage. The
decrease is more significant for the tangential velocities.
Similarities between Figs.5 and 7 of radial velocity contours and
Figs.8 and 10 of tangential velocity contours indicate the
periodicity of the flow field within the IGV passage with the rotor
blade revolution. The change in the velocity values with the rotor
revolution is more pronounced closer to the trailing edge where it
reaches up to 15%. The effect of the rotor reduces at the upstream
in the IGV passage, and velocity decrease becomes around 5%. This
behavior of the radial and the tangential velocities is observed at
the other 3 blade-to-blade planes. These contours are presented in
Figs.11 through 28.

Due to the high negative incidence, the flow turns and
accelerates near the pressure surface close to the leading edge,
then it decreases which indicates a possible separation at this
region as can be seen from the velocities on the mid-span plane
(Figs.5-10) . This separation character can also be observed at 0.25
span (Figs.17-22), and 0.70 span (Figs.23-28) planes, but it can
not be seen as clearly on the plane at 0.10 span (Figs.11-16),
because of the slower moving flow resulted from the end wall
boundary layer. While tangential velocities increase downstream in
the passage, radial velocities remain at the same order of

magnitude. Both radial and tangential velocities have smaller
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values at the planes close to the end walls because of the end wall
boundary layer. This is more notable for the plane close to the
plexiglass window (0.1 span plane). Velocity decrease closer to
the end walls becomes more significant downstream, because end wall
boundary layer further develops. The development of the end wall
boundary layer is apparent from the spanwise variation of the pitch
averaged velocity at the inlet and exit cross sections presented in
Fig. 29. The end wall boundary layer effect on the exit velocity
profile can be seen more significantly at the plexiglass end wall.
The velocity profile is not symmetrical, its maximum value is not
located at the mid-channel, but it has shifted towards to the
plexiglass side. This profile is resulted from the 90° bend that
flow experiences at the exit of the scroll. 1In general, the flow
velocity on the suction surface is higher than the pressure surface
throughout the IGV passage at all blade-to-blade planes.

The low velocity region on the suction surface downstream from
the leading edge indicates the stagnation point. This low velocity
region is nbserved at all blade-to-blade planes.

Mean flow angle contours are presented in Figs.30 through 40
at 4 blade-to-blade planes for 3 rotor blade positions. Beta angle
is defined with respect to circumferential direction. The flow
angle at the entrance of the passage is almost uniform at all 4
planes, but they have higher values on the planes at 0.1 span
(Figs.30-32) and 0.7 span (Figs.39-41). Because the end wall
boundary layer decreases the flow velocity, and the radial pressure

gradient resultant from the passage geometry becomes more dominant
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hence this increases the flow angles. Upstream of the passage on
the 0.70 span plane (Figs.39-41), the flow angles are slightly
higher than the flow angles on 0.25 span plane (Figs.33-35)
although 0.7 span plane ‘s further away from the end wall. This
indicates that radial pressure field is more dominant at the plane
closer to the back wall due to the smaller velocities, which are
caused by 90° turning at the scroll exit. Also the flow angles are
higher at the measurement points close to the pressure and suction
surfaces because of the blade boundary layer. Beta angle decreases
with the accelerating flow along the blade passage. The exit flow
angle is higher than the blade trailing edge solid angle which is
11 deg. This indicates an underturning of the flow at the exit.
The flow angle at the exit of the passage at 0.1 span plane
(Figs.30-32) is higher, which shows that the radial pressure field
at the exit is stronger than the passage pressure field when it
approaches the end wall, and it further turns the flow in radial
direction.

The normalized axial velocity contours are given in Figs. 42
through 50 at 0.25, 0.50 and 0.70 span planes for 3 different rotor
positions. Axial velocity measurements could not be obtained on
0.10 span plane due to low signal-to-noise ratio for the purple
component. Positive values indicate velocities towards the
plexiglass window. The axial velocities are generally low in the
IGV passage with the exception of the separation region explained
previously. In addition to that, axial velocities are higher at the

stagnation point on 0.7 span plane which can be caused by the end

22




wall boundary layer collapsing at the stagnation point.
Turbulence results are presented with turbulent normal
stresses in radial and tangential directions and the Reynolds shear
stresses on the cross section planes in Figs 51 through 86 at 4
blade-to-blade planes and for 3 rotor blade positions. Figs 51-53
are the contours of turbulent normal stress in radial direction at
0.1 span plane. Radial normal stresses vary from 0.4 to 0.8 percent
through out the passage, and they do not show an increase towards
downstream. The region at the pressure surface closer to the
leading edge is the only exception where the turbulence stresses
increase up to 5 percent. This region is the flow separation region
as explained previously. The radial normal turbulence stress
contours at 0.25 span plane are shown in Figs. 54-56. The
turbulence stress levels are at the same order as the results
presented on 0.1 span plane. The high turbulence region at the
separation point is also shown at the blade pressure surface with
the maximum stress levels reaching 4 percent. The stagnation point
as pointed out before is at the suction surface downstream from the
leading edge. The turbulence stresses on this plane are high at
that stagnation point. It can be due to the inlet end wall boundary
layer collapsing on the blade hence creating high turbulence
region. This high turbulence region is not present at mid-span
plane presented in Figs.57-59. The turbulent normal stresses in
the radial direction on the mid-span plane show the same behavior
as the ones at the two previous planes. The only high turbulence

values are at the separation region close to the pressure surface.
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The turbulence stress values at that region are reaching 2.5
percent. Besides the separation zone, the normal stress values vary
from 0.1 to 0.4 percent over the IGV passage. The same turbulence
contours at 0.7 span plane are given in Figs.60-62. The normal
stresses are 0.3-0.4 percent in the blade passage with the
exception of the two familiar regions which are the separation
region at the pressure surface and the stagnation point on the
suction surface. The stress 1levels at the separation zone
increases up to 4 percent. When compare the stress levels at the
separation region for all the planes, 0.1 span plane has the
highest stress levels at this region although the stress levels at
other locations on this plane are at the same order. This indicates
that high turbulence flow is transported from mid-channel towards
to plexiglass end wall. This conclusion is supported by the axial
velocity contours which have high values in that region. Second
high turbulence zone at the stagnation point on 0.7 span plane
experiences much higher turbulence levels than 0.25 span plane.
This shows that the back end wall boundary layer is thicker than
the end wall boundary layer at the plexiglass side which was also
concluded previously. In general, the radial normal turbulence
values do not vary with the rotor revolution.

The turbulent normal stresses in the tangential direction are
given in the Figs.63-74. The tangential stresses on the 0.1 span
plane are presented in Figs.63-65. 1Inspection of these figures
shows that the separation region at the pressure surface are also

increased, reaching up to 7 percent. The tangential stress levels
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at other locations vary from 0.5 to 1 percent. Figs.66-68 show
tangential normal stresses on 0.25 span plane. Similar to the
other planes, the stress levels are high at the separation zone.
Also stagnation point shows increased turbulence levels which is
consistent to the results presented for radial turbulent stresses
on the same plane. Downstream after the reattachment, the stress
levels are higher across to passage than the stresses on the mid-
span plane presented in Figs.69-71. This indicates that, the cross
flow driven by the blade pressure gradient is transporting high
turbulence fluid from the pressure blade surface to the suction
blade surface. Further downstream at the trailing edge of the
pressure surface, the tangential stresses are at 2 percent level in
Fig.66 which gives the turbulence contours when the rotor blade is
at the trailing edge of the pressure surface. These stress levels
drops after the rotor blade passes as shown in Fig.67. This shows
the effect of the rotor blade on the tangential stress levels at
the trailing edge region of the IGV passage. The same behavior can
be observed on the mid-span plane by comparing Figs.69 and 70, on
0.7 span plane by comparing Figs.72 and 73. Mid-span blade-to-
blade tangential normal turbulence levels (Figs.69-71) are lower
than the levels on 0.25 plane as explained before. With exception
of the similar high turbulence values at the separation region, the
stress levels vary between 0.1 and 1 percent. There is not a high
turbulence region present at the stagnation point, because the end
wall inlet boundary layer does not extent to the mid-span.

Figs.72-74 show the tangential normal turbulence contours on 0.7
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span plane. The separation region as well as the stagnation point
exhibit high turbulence 1levels. The stress 1levels at the
stagnation point are higher than the stress levels at the same
point on 0.25 plane which also indicates that back end wall
boundary layer is more developed than the plexiglass side end wall
boundary layer. This results are consistent with the radial normal
turbulence results.

When compared the tangential normal stresses with the radial
normal stresses at the trailing edge on the mid-span plane
(Figs.57-59,69-71), it can be seen that the tangential normal
stresses are approximately seven times larger than the radial
normal stresses at the same region. The turbulence measurements
obtained in the same passage without the rotor at the mass flow
rates 0.2 and 0.3 1lb/s are reported by Eroglu and Tabakoff. The
tangential normal stresses at the trailing edge were measured only
three times larger than the radial normal stresses for both mass
flow rates, which indicates that the mass flow rate did not have an
effect on this ratio. Therefore it can be concluded that the
presence of the rotor increases tangential turbulent stresses at
the trailing edge in the IGV passage.

The Reynolds stresses on blade-to-blade plane are given in
Figs.75-86 on four planes and for three rotor blade positions.
Reynolds stresses are positive through out the passage. Similar to
the tangential and the radial stresses, the separation region has
higher Reynolds stress levels at all four planes. In addition to

that, high Reynolds stresses are present at the stagnation point on

26




0.25 span (Figs.78-80) and 0.7 span (Figs.84-86) planes which are
also consistent with the tangential and radial stress contours
presented previously for these planes.

(0) S S:

The velocity measurements through the rotor of the radial
inflow turbine were also carried out at the same mass flow rate and
rotor speed. The LDV measurements were performed at six cross
section planes which were perpendicular to the main streamline
(Fig.87). Four measurement locations were chosen in the spanwise
direction. These measurement points were at 0.1, 0.25, 0.5, and 0.7
span distances from the tip of the rotor blade. Mean velocify
results are presented as relative velocity contours in streamwise,
tangential, and spanwise directions within the rotor blade
passages. The turbulence results are given as normalized normal
stresses in streamwise and tangential directions. The normal
stresses are normalized with passage averaged relative velocity at
the rotor inlet which was 10.8 m/s for the test condition.

The first cross section is at 0.05 inches downstream from the
rotor tip. The streamwise and the tangential velocity contours are
shown in Figs 88 and 89 respectively. The averaged incidence angle
at the entrance of the rotor was calculated from the measured
velocity values and found to be 40 deg. with respect to the
tangential direction. The tangential velocities are high closer to
the suction blade surface, and they decrease rapidly when th=zy
approach .he blade pressure surface. Streamwise velocities show

the same behavior as they are higher at the suction side. The
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second cross section is located at 0.10 inches downstream from the
rotor tip. The streamwise velocity is still higher at the suction
surface due to the turning (Fig.90). The tangential velocities
significantly decrease as the flow adjust itself to the rotor blade
passage as shown in Fig.91. But the tangential velocity component
is still from the suction surface to the pressure surface. This
indicates that the initial inertia that the flow has at the
entrance of the rotor due to the incidence angle is still a
dominating factor over the pressure field of the rotor blade
passage. Figs.92 and 93 are streamwise and tangential velocity
contours at the third cross section which is located at the point
the flow starts turning from radial direction to axial direction in
the rotor. The streamwise velocity is higher at the pressure
surface as shown in Fig.92. This can be due to transportation of
higher energy flow from the suction to the pressure surface with
th2 tangential velocity component.. Tangential velocity at this
cross section is very low throughout the passage (Fig.93). Fig. 94
and 95 give streamwise and tangential velocities in the fourth
cross section which is located at the point at which the flow is at
the half way of the turning from the radial tc the axial direction.
Streamwise velocities are higher towards to the hub, because the
flow has larger turning at that region than the flow at the shroud
section. The tangential velocities change direction in the
passage, and they are from pressure to suction surface at the
fourth cross section, because the pressure field within the blade

passage becomes more dominant. The section five is at the region
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when the flow turns completely to the axial direction. The
streamwise and the tangential velocities are presented in Figs.96
and 95. The streamwise velocity is almost uniform in the cross
section, but it decreases closer to the suction surface which
indicates boundary layer development. Also high velocity gradients
are experienced closer to the shroud. The tangential velocities are
relatively low across the rotor blade passage (Fig.97). The sixth
cross section is at the exit of the rotor. The streamwise and the
tangential velocity contours at this cross section are presented in
Figs.98 and 99. The streamwise velocity is slightly higher in the
hub section. The tangential velocities are uniform in the rotor
passage as shown in Fig.99.

The turbulent normal stresses in the streamwise and the
tangential directions in the rotor are presented in Figs.100
through 111. The streamwise and tangential normal turbulence
stress contours on the first cross section are shown in Figs.100
and 100. Both normal stresses are high near the suction surface
because of the possible separation caused by high incidence angle.
Turbulence stresses at the second cross section increase
considerably at the same region (Figs.102 and 103). This indicates
further development of the separation at the rotor entrance closer
to the suction surface. The turbulence stresses at the third cross
section are given in Figs.104 and 105. The high turbulence stress
region is shifted to the pressure blade surface. This indicates a
cross flow that transported high turbulence flow from the blade

suction to the blade pressure surface. The fourth cross section
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which is where the flow turns from the radial to the axial
direction has high turbulence stresses close to the back wall due
to that turning (Figs.106 and 107). Also relatively higher
tangential turbulence stresses are present closer to the blade
suction surface. This is because of the further transportation of
high turbulence flow from the third cross section at this region.
The turbulence stresses on the fifth plane are given in Figs.108
and 109. The stresses do not vary in the tangential direction but
generally they are higher at the mid passage and lower close to the
end walls because of the end wall boundary layer. Figs.110 and 111
are the contours of the streamwise and the tangential turbulence
stresses at the cross section six which is located at 0.05 inches
before the rotor exit. The flow closer to the hub has higher
turbulence stresses. This is because of the adjustment of the flow
to the exit geometry which does not have the blockage caused by the
rotor shaft.

Spanwise velocity measurements were obtained at the first 4
cross sections. Measurements at cross sections 5 and 6 for the
spanwise velocity are rejected due to low signal to noise ratio.
Spanwise velocity contours for planes 1 through 4 are presented in
Figs.112-115. Velocity values are low for all 4 cross sections, but
the spanwise component increases at the cross section 4, because
the flow starts turning from the radial to the axial direction
which introduces three dimensional character. Also at all cross
sections, spanwise velocity component is relatively higher at the

rotor blade pressure surface close to the hub. This indicates a
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possible transportation of the boundary flow from the end wall

section towards to mid channel.
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CONCLUSIONS AND RECOMMENDATIONS

The flow fields of the IGV and the rotor blade passages were
measured with three component LDV system. The IGV flow field was
found to be affected by the presence of the rotor. The periodicity
of the flow field in the passage with the rotor revolution was
observed. It was observed that the flow field in the IGV passage
was strongly influenced by the upstream scroll geometry.. A
separation region at the inlet pressure surface due to high
negative incidence angle was detected. The high turbulence flow
generated by the separation region is further transported to the
downstream suction surface. Turbulent stress levels at the
trailing edge of the IGV are affected by the presence of the rotor.
The ratio of the tangential normal stresses to the radial normal
stresses at the exit of the IGV were more than doubled when
compared to the case without the rotor. The measurement in the
rotor blade passages revealed a separation region at the suction
surface at the inlet due to incidence angle. The cross flow and
turbulence levels were found to be affected by the incidence angle.
Transportation of the high turbulence fluid downstream in the
passage was observed.

For future work, the flow field at the exit of the rotor
should be investigated for better understanding of the mixing
mechanism and corresponding losses at the exit region of the radial

inflow turbine. Also an unsteady computer code can be used to

32




]

obtain the potential flow solution throughout the radial inflow
turbine. Analysis of the experimental results and the potential
flow will enable to understand the secondary flows in the radial

turbine in greater detail.
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APPENDIX A

A) The following scientific and technical personnel were participating in
this research project.

Name Title

W. Tabakoff Professor (Principal Investigators)
M. Pasin Ph.D. Student

M. Morgan Ph.D. Student

M. Metwally Ph.D. Student

P. Kunkel Electronics Technician

B) Students working on the project and obtaining degrees.

M. Metwally, Ph.D. - 6/14/92

C) Technical Publications:

M. Pasin, W. Tabakoff, "Laser Measurements of Flow Field in a Radial Turbine
Rotor," submitted for AIAA 31lst Aerospace Sciences Meeting and Exhibit,
1993.

M Pasin, W. Tabakoff, "Unsteady Measurements of the Flow Field in Radial
Turbine Guide Vanes with LDV,” AIAA 18th Annual Mini-Symposium on Aerospace
Science and Technology, Dayton, Ohio, March 26, 1992 (Best Paper Award).

A.N. Lakshminarasimha, W. Tabakoff and M. Metwally, "Laser Doppler
Velocimeter Measurements in the Vortex Region of a Radial Inflow Turbine,"
AIAA Journal of Propulsion, Vol. 8, No. 1, Jan.-Feb. 1992, pp. 184-191.

M. Pasin, W. Tabakoff, "Laser Measurements of Unsteady Flow Field in a
Radial Turbine Guice Vanes," AIAA 30th Aerospace Sciences Meeting and
Exhibit, Reno, Nevada, 1992 (Paper No. AIAA-92-0394).

M. Pasin, W. Tabakoff, "Laser Measurements of Velocity and Flow in a Radial

Turbine Guide Vanes," AIAA 17th Annual Mini-Symposium on Aerospace Science
and Technology, Dayton, Ohio, 1991.
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